基於藝術家資料庫之畫風轉換系統

王聖棋
Digital painting synthesizes an output image with paint styles of example images along with the input source image. However, the synthesis procedure always requires the user intervention in selecting patches from example images that best describe its paint styles. The thesis presents a systematic system framework to synthesize example-based rendering images requires no user intervention in the synthesis procedure.

The artistic database is been comprised in this work, and the user can synthesize an image according to the paint styles of different well known artists. We use the mean shift image segmentation procedure and the texture re-synthesis method to construct our artistic database, and then find the correspondence between example textures and the mean-shifting areas of the input source image, and then synthesize the output images using the patch-based sampling approach.The main contribution of this thesis is the systematic paint style transfer system for synthesizing a new image without requiring any user intervention. The artistic database is composed of re-synthesized mean-shifting example images of different artists, which are adopted as learning examples of the paint style of different well known artists during the synthesis procedure, and the system will synthesize a new image with the paint style of the user selected artist from the database automatically.

數位繪圖依據來源影像,合成一張新的具有範例影像之繪畫風格之影像。然而,合成的過程中總是需要使用者從範例影像中選擇最能夠代表其中的繪畫風格的區塊。本論文提出一個系統化的系統架構,能夠合成一張具有和範例影像同樣的繪畫風格之影像,但是不需要使用者進行任何額外的工作。在這份研究中,同時提出一個藝術家風格的資料庫,這個資料庫能夠讓使用者合成一張任何他所想要的著名的藝術家的繪畫風格。我們使用平均值移動演算法來進行影像切割的動作,加上材質重新合成的方法,來建構我們的藝術家資料庫。並且在範例影像和來源影像中,找出區塊間彼此相對應的關係,並且使用基於區塊樣本的材質合成技術來合成最後的輸出影像。這篇論文的主要貢獻在於一個系統化的架構,來合成影像,並且不需要經由任何使用者的幫助。藝術家資料庫是由材質重新合成過的影像切割區塊所建構而成的。基於藝術家資料庫的建構,使用者可以選取任何他所想要的藝術家風格,來進行合成的工作,並且在合成的過程中,系統會自動地挑選最適合的畫風來進行合成的動作,完全不需要使用者的介入,也能產生出一張全新的具有某種藝術家繪畫風格的輸出影像。